Matematica creativa e packaging

Elena Marchetti - Luisa Rossi Costa
Dipartimento di Matematica *F. Brioschi*Politecnico di Milano
Piazza Leonardo da Vinci, 32- 20133 Milano

POLIGONI E TASSELLAZIONI DEL PIANO

I poligoni regolari

Ottimizziamo:

Dati un triangolo equilatero, un quadrato, un esagono regolare con la stessa area *A*, quale di essi ha perimetro minore?

$$\ell_3 = \frac{2}{\sqrt[4]{3}} \sqrt{A} \cong 1.5197 \sqrt{A} \qquad \rightarrow P_3 \cong 4.559 \sqrt{A}$$

$$\ell_4 = \sqrt{A} \qquad \longrightarrow P_4 = 4\sqrt{A}$$

$$\ell_6 = \frac{\sqrt{2}\sqrt[4]{3}}{3}\sqrt{A} \cong 0.6204\sqrt{A} \to P_6 \cong 3.7224\sqrt{A}$$

$$A_3 = A_4 = A_6 \rightarrow P_3 < P_4 < P_6$$

I poligoni regolari

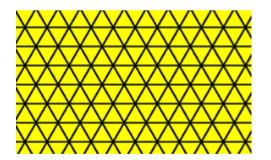
Ottimizziamo:

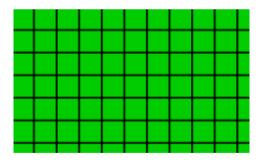
Dati un triangolo equilatero, un quadrato, un esagono regolare con lo stesso perimetro è l'esagono ad avere area maggiore

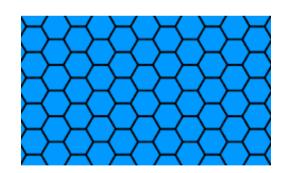
$$P_3 = P_4 = P_6 \rightarrow A_3 < A_4 < A_6$$

Tassellazione regolare

E' possibile ricoprire il piano con poligoni regolari dello stesso tipo se e solo se sono triangoli equilateri, quadrati, esagoni regolari.

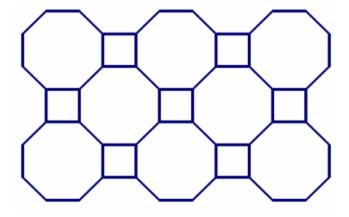


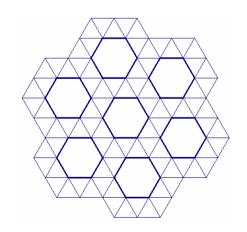




Ottenuta con poligoni regolari (diversi fra loro).

In tutti i vertici la disposizione dei poligoni è la stessa

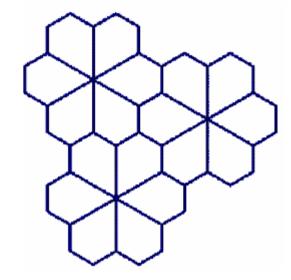


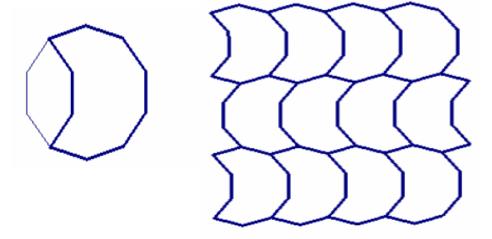


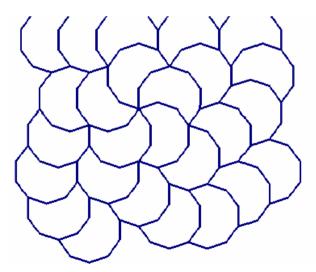
an **informa** business

Know how to achieve Tassellazioni quasi-regolari

Forme non regolari tutte uguali tra loro



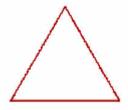


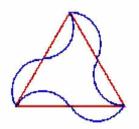


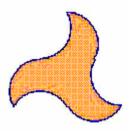
Know how to achieve Tassellazioni quasi-regolari

Pajarita Nazarì

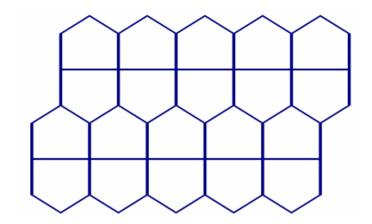
Ha la stessa area del triangolo equilatero da cui si ottiene.

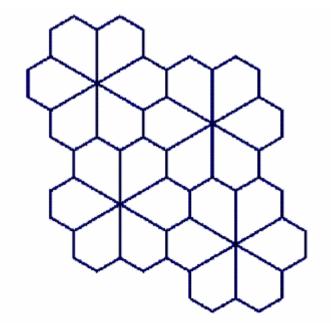


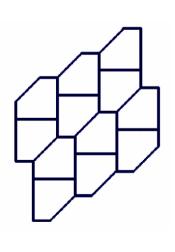


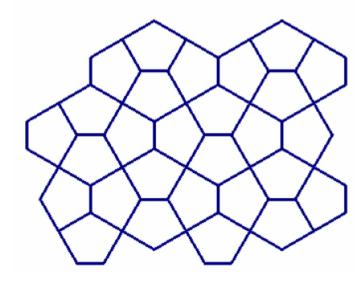


La tassellazione del piano con pentagoni non regolari è possibile.







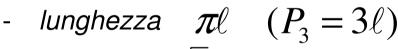


DAI POLIGONI REGOLARI AI POLIGONI DI REULEAUX

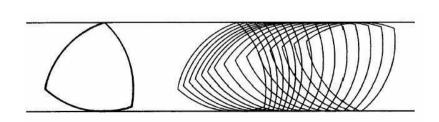
Triangolo di Reuleaux

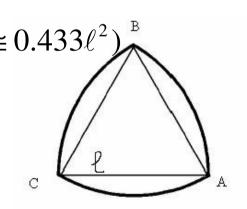
Curva chiusa, figura di larghezza costante:

- tre archi di circonferenza centrati nei vertici di un triangolo equilatero di lato $\,\ell\,$
- rotola tra due rette parallele come una circonferenza

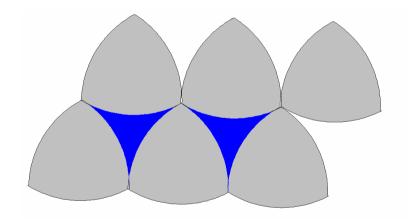


- lunghezza
$$\pi\ell$$
 $(P_3=3\ell)$
- area $\frac{(\pi-\sqrt{3})}{2}\ell^2\cong 0.7048\ell^2$ $(A_3=\frac{\sqrt{3}}{4}\ell^2\cong 0.433\ell^2)^{\mathbb{B}}$





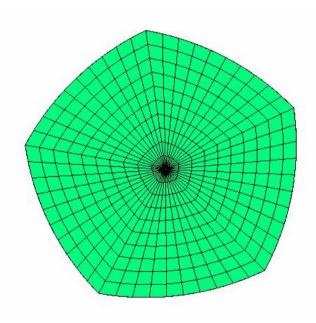
Le proprietà geometriche del triangolo di Reuleaux permettono una tassellazione quasi-regolare del piano



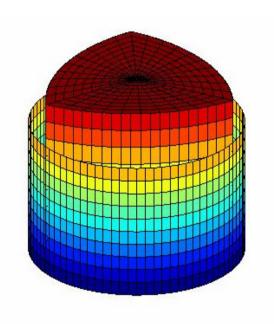
Poligoni di Reuleaux

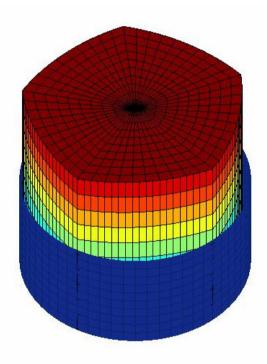
Curve chiuse, figure di larghezza costante:

- archi di circonferenza centrati nei vertici di un poligono regolare di 2n+1 lati
- rotolano tra due rette parallele come una circonferenza



Scatole di Reuleaux



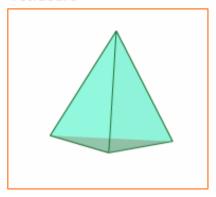


Un poligono di Reuleaux è inscritto nella stessa circonferenza del poligono regolare

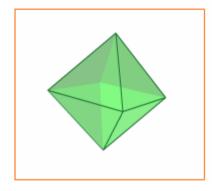
POLIEDRI

I solidi platonici

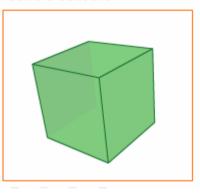
Tetraedro



Ottaedro



Cubo o esaedro



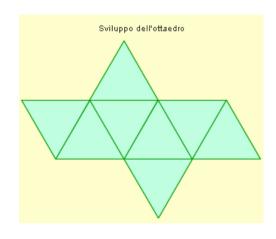
Dodecaedro

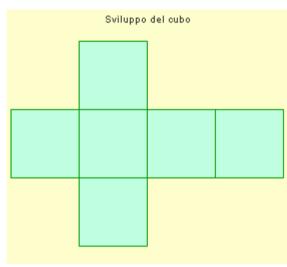
Icosaedro

Solidi convessi limitati da poligoni regolari tutti uguali tra loro.

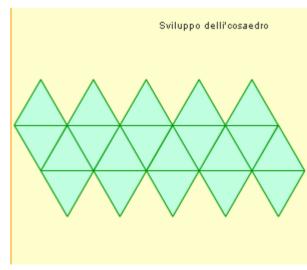
Sono solo cinque.

I solidi platonici



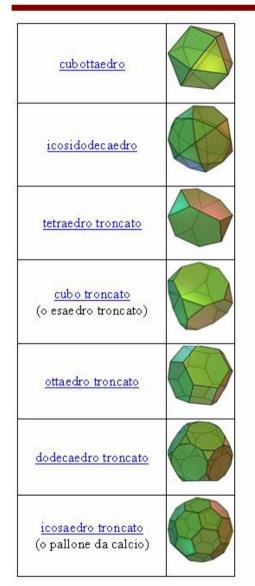


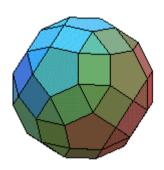
Le facce dei poliedri sono triangoli equilateri, quadrati, pentagoni.



an **informa** business

I solidi di Archimede





Solidi convessi delimitati da due o tre tipi di poligoni regolari. I più semplici si ottengono troncando i vertici dei solidi platonici.

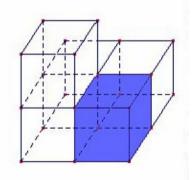
Know how to achieve Solidi platonici e archimedei

Know how to achieve Tassellazione dello spazio

Insieme di poliedri adiacenti che riempiono tutto lo spazio, senza lasciare "buchi"

Tra i solidi platonici è solo il **cubo** .

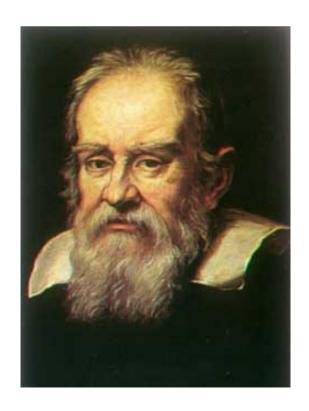
Tra i solidi archimedei è solo **l'ottaedro tronco.**

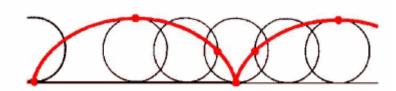


CURVE E SUPERFICI

Cicloide

Curva aperta tracciata da un punto appartenente ad una circonferenza che rotola lungo una retta





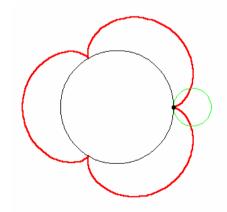
Epicicloide

Curva tracciata da un punto appartenente ad una circonferenza di raggio r che rotola esternamente ad un'altra circonferenza di raggio a (a>r)

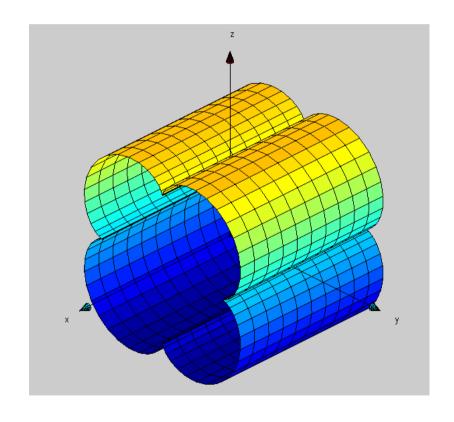
$$L = \frac{8(q+1)}{q^2} a$$

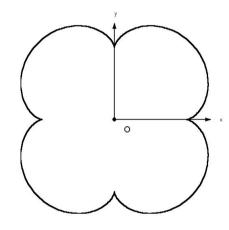
Chiusa se q = a/r è razionale **Aperta** se q = a/r è irrazionale

$$q = 3 \rightarrow L_{tot} = \frac{32}{3}a \quad (> 2\pi a)$$



Epicicloide



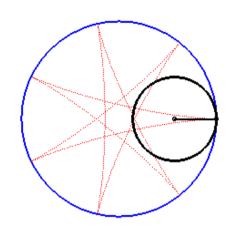


$$q = 4 \rightarrow L_{tot} = 10a \quad (> 2\pi a)$$

Ipocicloide

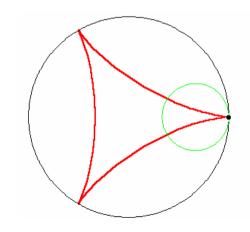
Curva tracciata da un punto appartenente ad una circonferenza di raggio r che rotola internamente ad un'altra circonferenza di raggio a (a>r)

$$L = \frac{8(q-1)}{q^2}a$$

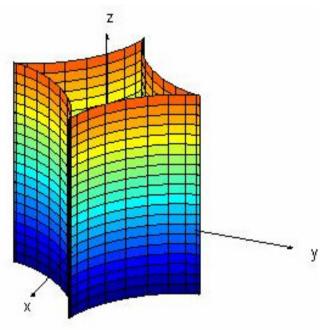


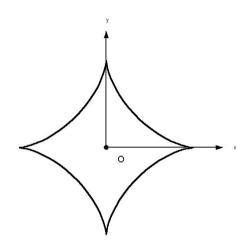
Chiusa se q = a/r è razionale **Aperta** se q = a/r è irrazionale

$$q = 3 \to L_{tot} = \frac{16}{3}a \ (< 2\pi a)$$



<u>Ipocicloide</u>





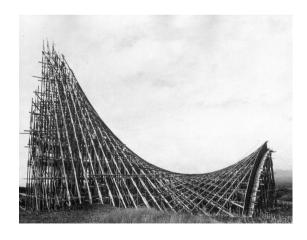
$$q = 4 \rightarrow L = 6a \quad (< 2\pi a)$$

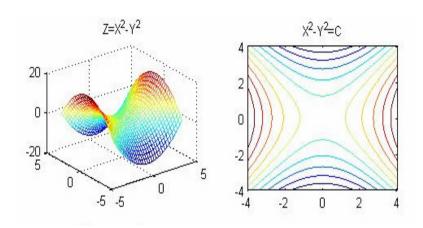
Paraboloide iperbolico

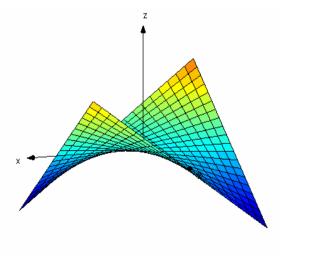
E' una superficie a doppia curvatura. Ha la forma di una sella.

Le sezioni con piani orizzontali sono **iperboli**, le sezioni con piani verticali sono **parabole**.

E' una superficie **rigata**: per ogni suo punto passa almeno una retta.







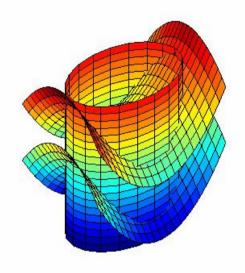
an **informa** business

Paraboloide iperbolico

Le patatine fritte assumono una configurazione a sella: la scatola rispetta la loro forma

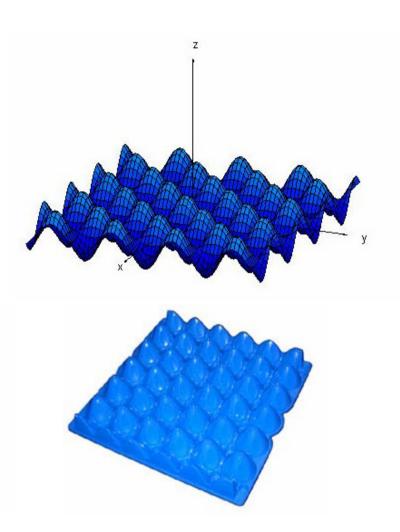
Paraboloide iperbolico

La scatola verde si può ottenere intersecando un cilindro a sezione ellittica con due paraboloidi iperbolici



Modello matematico

Molte confezioni si possono interpretare in termini matematici.



Le trasformazioni lineari

<u>La duplicazione del cubo</u>

I cubi sovrapposti hanno ciascuno **volume metà** del precedente

La "torre" è generata trasformando il cubo alla base di spigolo L₁ mediante **riduzione e traslazione**.

Si può valutare la lunghezza dello spigolo di ogni cubo tenendo conto del fattore di riduzione.

$$L_2 = \frac{L_1}{\sqrt[3]{2}}, L_3 = \frac{L_2}{\sqrt[3]{2}} = \frac{L_1}{(\sqrt[3]{2})^2}, \dots$$

$$L_{n} = \frac{L_{n-1}}{\sqrt[3]{2}} = \frac{L_{1}}{(\sqrt[3]{2})^{n}}$$

