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a b s t r a c t

This paper discusses the challenges involved in the representation and treatment of uncertainties in risk

assessment, taking the point of view of its use in support to decision making. Two main issues are

addressed: (1) how to faithfully represent and express the knowledge available to best support the

decision making and (2) how to best inform the decision maker. A general risk-uncertainty framework

is presented which provides definitions and interpretations of the key concepts introduced. The

framework covers probability theory as well as alternative representations of uncertainty, including

interval probability, possibility and evidence theory.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this work is to critically reflect on the state of
knowledge about the treatment of uncertainties in risk assess-
ments used in practical decision making situations concerning
high-consequence technologies, e.g. nuclear, oil and gas, transport
etc. The starting point is the acknowledgment that although the
use of risk assessment and uncertainty analysis for decision
making may take different perspectives, there is a shared and
common understanding that these tools provide useful decision
support in the sense that their outcomes inform the decision
makers insofar as the technical risk side of the problem is relevant
for the decision [1].

It is further understood that the actual decision outcome for a
critical situation involving a potential for large consequences
typically derives from a thorough process which combines (i) an
analytic evaluation of the situation (i.e., the risk assessment) by
rigorous, replicable methods evaluated under agreed protocols of
an expert community and peer-reviewed to verify the assump-
tions underpinning the analysis, and (ii) a deliberative group
exercise in which all involved stakeholders and decision makers
collectively consider the decision issues, look into the arguments
for their support, scrutinize the outcomes of the technical
analysis and introduce all other values (e.g. social and political)
not explicitly included in the technical analysis [2]. This way of

proceeding allows keeping the technical analysis manageable by
complementation with deliberation for ensuring coverage of the
non-modeled issues. In this way, the analytic evaluation (i.e., the
risk assessment) supports the deliberation by providing numer-
ical outputs (point estimates and distributions of the relevant
safety parameters, possibly to be compared with predefined
numerical safety criteria for further guidance to the decision) and
also all the argumentations behind the analysis itself, including
the assumptions, hypotheses, parameters and their uncertainties.
With respect to the latter issue, the key point is to guarantee that
uncertainties are taken into account in a way that the information
and knowledge relevant for the problem are represented in the
most faithful manner. The bottom line concern with respect to
uncertainty in decision making is to provide the decision makers
with a clearly informed picture of the problem upon which they
can confidently reason and deliberate.

This process represents an ambition or ideal. The real world is
of course often far away from this ideal (refer to discussions for
example by Jasanoff [3,4]).

A number of alternative approaches exist for representing and
describing uncertainties in risk assessments. Five main categories are:

(a) probabilistic analysis [5],
(b) probability bound analysis, combining probability analysis

and interval analysis [6],
(c) imprecise probability, after Walley [70]) and the robust Bayes

statistics area [7],
(d) random sets, in the two forms proposed by Dempster [8] and

Shafer [9],
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(e) possibility theory [10,11], which is formally a special case of
the imprecise probability and random set theories.

For more than 30 years, the probabilistic analysis has been
used as the basis for the analytic process of risk assessment (see
reviews by Rechard [12,13]). The common term used is Probabil-
istic Risk Assessment (PRA, also referred to as Quantitative Risk
Assessment, QRA). Its first application to large technological
systems (specifically nuclear power plants) dates back to the early
1970s [14] but the basic analysis principles have not changed
much.

However, the purely probability-based approaches to risk and
uncertainty analysis can be challenged under the common
conditions of limited or poor knowledge on the high-consequence
risk problem, for which the information available does not
provide a strong basis for a specific probability assignment: in
such a decision making context, many stakeholders may not be
satisfied with a probability assessment based on subjective
judgments made by a group of analysts. In this view, a broader
risk description is sought where all the uncertainties are laid out
‘‘plain and flat’’ with no additional information inserted in the
analytic evaluation in the form of assumptions and hypotheses
which cannot be proven right or wrong. This concern has sparked
a number of investigations in the field of uncertainty representa-
tion and analysis, which have led to the developments of
frameworks such as those categorized in items (b)–(e) above.

Finally, notice that in the implementation of the decision it is
common that the decision makers seek for further protection by
adding conservatisms and performing traditional engineering
approaches of ‘‘defense-in-depth’’ to bound the uncertainties
and in particular the ‘‘unknown unknowns’’ (completeness
uncertainty).

In this paper, we will attempt to critically revisit the above
mentioned frameworks of uncertainty analysis. The technical
details of the different frameworks will be exposed only to the
extent necessary to analyze and judge how these contribute to the
communication of risk and the representation of the associated
uncertainties to decision makers, in the typical settings of high-
consequence risk analysis of complex systems with limited
knowledge on their behavior. The driver of the critical analysis
is really the decision making and the need to feed it with
representative information derived from the risk assessment, to
robustly support the decision.

The motivation behind the work comes from engineering
applications; yet, the discussion is to large extent general and
relevant also for other areas, including climate change and
financial risk management which dominate the current risk
concerns of the World: the role of risk assessments and the way
uncertainties are treated in these assessments are of utmost
importance for the management and governance of risk in these
areas.

2. Risk and risk analysis

The subject of risk nowadays plays a relevant role in the
design, development, operation and management of components,
systems and structures in many types of industry. In all general-
ity, the problem of risk arises wherever there exist a potential
source of damage or loss, i.e. a hazard (threat), to a target, e.g.
people or the environment. Under these conditions, safeguards
are typically devised to prevent the occurrence of the hazardous
conditions, and protections are emplaced to protect from and
mitigate its associated undesired consequences. The presence of a
hazard does not suffice itself to define a condition of risk; indeed,
inherent in the latter there is the uncertainty that the hazard

translates from potential to actual damage, bypassing safeguards
and protections. In synthesis, the notion of risk involves some
kind of loss or damage that might be received by a target and the
uncertainty of its transformation in an actual loss or damage.

One classical way to defend a system against the uncertainty of
its failure scenarios has been to: (i) identify the group of failure
event sequences leading to credible worst-case accident scenarios
{s*} (design-basis accidents), (ii) predict their consequences {x*}
and (iii) accordingly design proper safety barriers for preventing
such scenarios and for protecting from, and mitigating, their
associated consequences [15].

Within this approach (often referred to as a structuralist

defense-in-depth approach), safety margins against these scenarios
are enforced through conservative regulation of system design
and operation, under the creed that the identified worst-case,
credible accidents would envelope all credible accidents for what
regards the challenges and stresses posed on the system and its
protections. The underlying principle has been that if a system is
designed to withstand all the worst-case credible accidents, then
it is ‘‘by definition’’ protected against any credible accident [16].

This approach has been the one classically undertaken, and in
many technologies it still is, to protect a system from the
uncertainty of the unknown failure behaviors of its components,
systems and structures, without directly quantifying it, so as to
provide reasonable assurance that the system can be operated
without undue risk. However, the practice of referring to ‘‘worst’’
cases implies strong elements of subjectivity and arbitrariness in
the definition of the accidental events, which may lead to the
consideration of scenarios characterized by really catastrophic
consequences, although highly unlikely. This may lead to the
imposition of unnecessarily stringent regulatory burdens and thus
excessive conservatism in the design and operation of the system
and its protective barriers, with a penalization of the industry.
This is particularly so for those high-consequence industries, such
as the nuclear, aerospace and process ones, in which accidents
may lead to potentially large consequences.

For this reason, an alternative approach has been pushed
forward for the design, regulation and management of the safety
of hazardous systems. This approach, initially motivated by the
growing use of nuclear energy and by the growing investments in
aerospace missions in the 1960s, stands on the principle of
looking quantitatively also at the reliability of the accident-
preventing and consequence-limiting protection systems that are
designed and implemented to intervene in protection against all
potential accident scenarios, in principle with no longer any
differentiation between credible and incredible, large and small
accidents [17]. Initially, a number of studies were performed for
investigating the merits of a quantitative approach based on
probability for the treatment of the uncertainty associated with
the occurrence and evolution of accident scenarios [18]. The
findings of these studies motivated the first complete and full-
scale probabilistic risk assessment of a nuclear power installation
[14]. This extensive work showed that indeed the dominant
contributors to risk need not be necessarily the design-basis
accidents, a ‘‘revolutionary’’ discovery undermining the funda-
mental creed underpinning the structuralist, defense-in-depth
approach to safety [16].

Following these lines of thought, and after several ‘‘battles’’ for
their demonstration and valorisation, the probabilistic approach
to risk analysis (PRA) has arisen as an effective way for analyzing
system safety, not limited only to the consideration of worst-case
accident scenarios but extended to looking at all feasible scenarios
and its related consequences, with the probability of occurrence
of such scenarios becoming an additional key aspect to be
quantified in order to rationally and quantitatively handle
uncertainty [14,19–27].
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From the view point of safety regulations, this has led to the
introduction of new criteria that account for both the conse-
quences of the scenarios and their probabilities of occurrence
under a now rationalist, defense-in-depth approach. Within this
approach to safety analysis and regulation, reliability engineering
takes on an important role in the assessment of the probability of
occurrence of the accident scenarios as well as the probability of
the functioning of the safety barriers implemented to hinder the
occurrence of hazardous situations and mitigate their conse-
quences if such situations should occur [15].

2.1. The framework of PRA

The basic analysis principles used in a PRA can be summarized
as follows. A PRA systemizes the knowledge and uncertainties
about the phenomena studied by addressing three fundamental
questions [27]:

� Which sequences of undesirable events transform the hazard
into an actual damage?
� What is the probability of each of these sequences?
� What are the consequences of each of these sequences?

This leads to a widely accepted, technical definition of risk in
terms of a set of triplets [25] identifying the sequences of
undesirable events leading to damage (the accident scenarios),
the associated probabilities and the consequences. In this view,
the outcome of a risk analysis is a list of scenarios quantified in
terms of probabilities and consequences, which collectively
represent the risk. On the basis of this information, the designer,
the operator, the manager and the regulator can act effectively so
as to manage (and possibly reduce) risk.

In the PRA framework, knowledge of the problem and the
related uncertainties are systematically manipulated by rigorous
and repeatable probability-based methods to provide representa-
tive risk outcomes such as the expected number of fatalities (in
terms of indices such as potential loss of lives (PLL) and fatal
accident rate (FAR)), the probability that a specific person shall be
killed due to an accident (individual risk) and frequency-
consequence (f–n) curves expressing the expected number of
accidents (frequency f) with at least n fatalities.

In spite of the maturity reached by the methodologies used in
PRA, a number of new and improved methods have been
developed in recent years to better meet the needs of the analysis,
in light of the increasing complexity of the systems and to
respond to the introduction of new technological systems. Many
of the methods introduced allow increased levels of detail and
precision in the modeling of phenomena and processes within an
integrated framework of analysis covering physical phenomena,
human and organisational factors as well as software dynamics
(e.g. [28]). Other methods are devoted to the improved repre-
sentation and analysis of the risk and related uncertainties, in
view of the decision making tasks that the outcomes of the
analysis are intended to support. Examples of newly introduced
methods are Bayesian Belief Networks (BBNs), Binary Digit
Diagrams (BDDs), multi-state reliability analysis, Petri nets and
advanced Monte Carlo simulation tools. For a summary and
discussion of some of these models and techniques, see [23,15].

The probabilistic analysis underpinning PRA stands on two
lines of thinking, the traditional frequentist approach and the
Bayesian approach [22,23]. The former is typically applied in case
of large amount of relevant data; it is founded on well-known
principles of statistical inference, the use of probability models,
the interpretation of probabilities as relative frequencies, point
values, confidence intervals estimation and hypothesis testing.

The Bayesian approach is based on the use of subjective
probabilities and is applicable also in case of scarce amount of
data. The idea is to first establish adequate probability models
representing the aleatory uncertainties, i.e. the variabilities in the
phenomena studied, such as for example the lifetimes of a type of
unit; then, the epistemic uncertainties (due to incomplete
knowledge or lack of knowledge) about the values of the
parameters of the models are represented by prior subjective
probability distributions; when new data on the phenomena
studied become available, Bayes’ formula is used to update the
representation of the epistemic uncertainties in terms of
the posterior distributions. Finally, the predictive distributions
of the quantities of interest (the observables, for example the
lifetime of new units) are derived by applying the law of total
probability. The predictive distributions are subjective but they
also reflect the inherent variability represented by the underlying
probability models.

From a conceptual viewpoint, a subjective probability is
commonly linked to the betting interpretation that goes back to
the foundational literature on subjective probabilities (see e.g.
[29,30]). However to avoid a mixture between uncertainty
assessments and value judgments many analysts prefer to use
the comparison with a standard interpretation, for example
drawing a ball from an urn [22,31]. The term ‘‘subjective
probability’’ is also debated – it gives the impression that the
probability and the associated assessment are non-scientific and
arbitrary; it is often replaced by terms such as ‘‘judgmental
probability’’ and ‘‘knowledge-based probability’’ [30,32,33].

3. Uncertainty and uncertainty analysis

In all generality, the quantitative analyses of the phenomena
occurring in many engineering applications are based on
mathematical models that are then turned into operative
computer codes for simulation. A model provides a representation
of a real system dependent on a number of hypotheses and
parameters. The model can be deterministic (e.g. Newton’s
dynamic laws or Darcy’s law for groundwater flow) or stochastic
(e.g. the Poisson model for describing the occurrence of earth-
quake events).

In practice, the system under analysis cannot be characterized
exactly – the knowledge of the underlying phenomena is
incomplete. This leads to uncertainty in both the values of the
model parameters and on the hypotheses supporting the model
structure. It defines the scope of the uncertainty analysis.

An uncertainty analysis aims at determining the uncertainty in
analysis results that derives from uncertainty in analysis inputs
[34–36]. We may illustrate the ideas of the uncertainty analysis
by introducing a model G(X), which depends on the input
quantities X and on the function G; the quantity of interest Z is
computed by using the model Z¼G(X). The uncertainty analysis of
Z requires an assessment of the uncertainties of X and their
propagation through the model G to produce a characterization of
the uncertainties of Z. Typically, the uncertainty related to the
model structure G, i.e., uncertainty due to the existence of
alternative plausible hypotheses on the phenomena involved,
are treated separately [5,37–39]; actually, while the first source of
uncertainty has been widely investigated and more or less
sophisticated methods have been developed to deal with it,
research is still ongoing to obtain effective and accepted methods
to handle the uncertainty related to the model structure [40]. See
also Aven [1] who distinguishes between model inaccuracies (the
differences between Z and G(X)), and model uncertainties due to
alternative plausible hypotheses on the phenomena involved.
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Uncertainty is thus an unavoidable component affecting the
behavior of systems and more so with respect to their limits
of operation. In spite of how much dedicated effort is put into
improving the understanding of systems, components and
processes through the collection of representative data, the
appropriate characterization, representation, propagation and
interpretation of uncertainty remains a fundamental element of
the risk analysis of any system. Following this view, uncertainty
analysis is considered an integral part of PRA, although it can also
exist independently in the evaluation of unknown quantities.

In the context of PRA, uncertainty is conveniently distin-
guished into two different types: randomness due to inherent
variability in the system (i.e. in the population of outcomes of its
stochastic process of behavior) and imprecision due to lack of
knowledge and information on the system. The former type of
uncertainty is often referred to as objective, aleatory or stochastic
whereas the latter is often referred to as subjective, epistemic or
state-of-knowledge [5,41–44]. Probability models are introduced
to represent the aleatory uncertainties, for example a Poisson
model to represent the variation in the number of events
occurring in a period of time. The epistemic uncertainties arise
from a lack of knowledge of the parameters of the probability
models. Whereas epistemic uncertainty can be reduced by
acquiring knowledge and information on the system, the aleatory
uncertainty cannot, and for this reason it is sometimes called
irreducible uncertainty.

4. Methods of representation and treatment of uncertainty

The traditional tool used to express the uncertainties in PRA is
(subjective) probabilities. In this context, the quantities X and Z

referred to in the previous Section could be chances representing
fractions in a large (in theory infinite) population of similar
items (loosely speaking, a chance is the Bayesian term for
a frequentist probability, cf. the representation theorem of de
Finetti [45] and Bernardo and Smith [46, p. 172]). In this case,
the assessment is consistent with the so-called probability of
frequency approach, which is based on the use of subjective
probabilities to express epistemic uncertainties of unknown
frequencies, i.e. the chances [25]. The probability of frequency
approach constitutes the highest level of uncertainty analysis
according to a commonly referenced uncertainty treatment
classification system [47]. Refer to the Appendix A for further
details on the probability of frequency approach; this Appendix A
is partly based on Flage et al. [48].

However, the probability-based approaches to risk and
uncertainty analysis can be challenged, as discussed in Section 1.
Many researchers find the above framework for assessing
risk and uncertainties to be too narrow: risk is more than
some analysts’ subjective probabilities, which may lead to poor
predictions of Z. The knowledge that the probabilities are based
on could be poor and/or based on wrong assumptions. One may
assign a low probability of health problems occurring as a result
of some new chemicals, but these probabilities could produce
poor predictions of the actual number of people that experience
such problems. Or one may assign a probability of fatalities
occurring on an offshore installation based on the assumption
that the installation structure will withstand a certain accidental
load; in real-life the structure could however fail at a lower load
level: the assigned probability did not reflect this uncertainty.

Many researchers would argue that the information commonly
available in the practice of risk decision making does not provide
a sufficiently strong basis for a specific probability assignment;
the uncertainties related to the occurrence of the events and
associated consequences are too large. Furthermore, in a risk

analysis context there are often many stakeholders and they may
not be satisfied with a probability-based assessment expressing
the subjective judgments of the analysis group: again a broader
risk description is sought.

It is true that adopting the subjective probability approach,
probabilities can always be assigned, but the information basis
supporting the assignments is not reflected by the numbers
produced. One may for example assess two situations both
resulting in subjective probabilities equal to 0.7 say, but in one
case the assignment is supported by substantial amount of
relevant data, the other by more or less no data.

Dubois [49] expresses the problem in this way: if the ill-known
inputs or parameters to a mathematical model are all represented
by single probability distributions, either objective when suffi-
cient information is available or subjective when scarce informa-
tion is available, then the resulting distribution of the output
can hardly be properly interpreted: ‘‘the part of the resulting
variance due to epistemic uncertainty (that could be reduced) is
unclear’’ [49].

The problem as commented by Dubois [49] seems to be that
aleatory uncertainties are mixed with epistemic uncertainties.
However, if chances (more generally, probability models with
parameters) can be established (justified) reflecting the aleatory
uncertainties a full risk description needs to assess uncertainties
about these quantities. It would not be sufficient to provide
predictive distributions alone, as important aspects of the risk
then would not be revealed. The predictive distributions would
not distinguish between the stochastic variation and the epis-
temic uncertainties as noted by Dubois [49]. The indicated
inadequacy of the subjective probabilities for reflecting uncer-
tainties is thus more an issue of addressing the right quantities: if
chances can be established (justified), the subjective probabilities
should be used to reflect the uncertainties about these chances.

Probability models constitute the basis for statistical analysis,
and are considered essential for assessing the uncertainties and
drawing useful insights [34,50]. The probability models coher-
ently and mechanically facilitate the updating of probabilities.
A probability model presumes some sort of model stability,
populations of similar units need to be constructed (in the
Bayesian context, formally an infinite set of exchangeable random
variables). But such stability is often not fulfilled [51]. Consider
the definition of a chance. In the case of a die we would establish a
probability model expressing that the distribution of outcomes is
given by (p1, p2, y, p6), where pi is the chance of outcome i,
interpreted as the fraction of outcomes resulting in outcome i.
However, in a risk assessment context the situations are often
unique, and the establishment of chances means the construction
of fictional populations of non-existing similar situations. Then
chances and probability models in general, cannot be easily
defined as in the die tossing example; in many cases, they cannot
be meaningfully defined at all. For example, it makes no sense to
define a chance (frequentist probability) of a terrorist attack [52].
In other cases, the conclusion may not be so obvious. For example,
a chance of an explosion scenario in a process plant may be
introduced in a risk assessment, although the underlying popula-
tion of infinite similar situations is somewhat difficult to describe.

There is a huge literature addressing the foundational
problems of the probability-based risk assessments. Here are
some examples of critical issues raised. Reid [53] argues that there
is a common tendency of underestimation of the uncertainties in
risk assessments. The disguised subjectivity of risk assessments is
potentially dangerous and open to abuse if it is not recognised.
According to Stirling [54], using risk assessment when strong
knowledge about the probabilities and outcomes does not exist, is
irrational, unscientific and potentially misleading. Tickner and
Kriebel [55] stress the tendency of decision-makers and agencies
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not to talk about uncertainties underlying the risk numbers.
Acknowledging uncertainty can weaken the authority of the
decision-maker and agency, by creating an image of being
unknowledgeable. Precise numbers are used as a facade to cover
up what are often political decisions. Renn [56] summarizes the
critique drawn from the social sciences over many years and
concludes that technical risk analyses represent a narrow frame-
work that should not be the single criterion for risk identification,
evaluation and management.

Based on the above critiques, it is not surprising that
alternative approaches for representing and describing uncertain-
ties in risk assessment have been suggested, such as those of the
four categories (b)–(e) listed in the Introduction. The Appendix A
at the end of the paper contains minimum details on the concepts
underpinning these approaches. For a more in-depth review,
see [57].

In probability bound analysis (b), interval analysis is used for
those components whose aleatory uncertainties cannot be
accurately estimated; for the other components, traditional
probabilistic analysis is carried out. However, this results often
in very wide intervals and the approach has been criticised for not
providing the decision-maker with specific analyst and expert
judgments about epistemic uncertainties [33]. The other three
frameworks (c)–(e) allow for incorporation and representation of
incomplete information. Their motivation is to be able to treat
situations where there is more information than an interval, but
less than a single specific probability distribution would imply.
The theories produce epistemic-based uncertainty descriptions
and in particular probability intervals (see the example in the
next Section 4.1), but they have not been broadly accepted in the
risk assessment community. Much effort has been made in this
area, often with a mathematical orientation, but no convincing
framework for risk assessment in practice presently exists based
on these alternative theories. Further research is required to make
these alternatives operational in a risk assessment context.

The same conclusions can be drawn also for other alternative
approaches that have recently been suggested, for example the
probabilistic inference with uncertain and partial evidence
developed by Groen and Mosleh [58] as a generalization of Bayes’
Theorem.

Work has also been carried out to combine different
approaches, for example probabilistic analysis and possibility
theory. Here the uncertainties of some parameters are repre-
sented by probability distributions and those of some other
parameters by means of possibilistic distributions. An integrated
computational framework has been proposed for jointly propa-
gating the probabilistic and possibilistic uncertainties [59]. This
framework has previously been tailored to event tree analysis [60]
and fault tree analysis [61], allowing for the uncertainties about
event probabilities (chances) to be represented and propagated
using both probability and possibility distributions. The work has
been extended in Flage et al. [62] by comparing the results of the
hybrid approach with those obtained by purely probabilistic and
possibilistic approaches, using different probability/possibility
transformations. See also Helton et al. [57] for some additional
examples of such integrative work.

4.1. An illustrative example

As an example of the differences in the outcomes of analyses
based on different uncertainty representation and propagation
approaches, we report here the results presented in Flage et al.
[61] with regards to the fault tree analysis of a stand-by liquid
control (SBLC) system of a nuclear boiling water reactor (BWR).
The probability (chance) q of occurrence of the top event ‘‘SBLC

failure on demand’’ in the fault tree over a fixed mission time
TM¼31 days is the outcome of interest. The quantity q depends on
the logical structure of the fault tree and the probabilities
(chances) of occurrence of component failures, or basic events.
The probabilities (chances) pi(li) of occurrence in TM of the basic
events Bi are assumed to be unknown. Here li is a parameter of
the underlying failure time distribution of component i. In the
analysis, exponential distributions are assumed for the failure
times of all components in the system, i.e., p(li)¼1�exp(�liTM).

The failure rates are assumed uncertain and the related
information available is such that for some of them a probabilistic
representation in terms of lognormal distributions is justified,
whereas for others triangular possibility distributions (see
Appendix A) are justified. Such uncertainties in the component
failure rates values must be propagated through the function that
links the basic events probabilities (chances) p(li) with the top
event probability (chance) q. The probabilistic, the possibilistic
and the hybrid representation and propagation approaches are
considered.

The cumulative distribution functions of the probability
(chance) q for the probabilistic (obtained by 106 Monte Carlo
samplings), possibilistic (obtained by 104 a-cut levels) and hybrid
(obtained by 105 Monte Carlo samplings and 104 a-cut levels)
approaches are shown in Fig. 1.

Summary statistics are then typically used to draw conclusions
based on these results, possibly by comparison with predefined
numerical safety criteria for further guidance to the decisions.

For the probabilistic approach, two quantities of interest are
the probability of the top event in terms of the expected value
P(A)¼E[q], and a percentile value of the uncertainty distribution,
say the 95th percentile, Q95. In this case these values equal 0.0179
and 0.0603, respectively.

For the possibilistic approach the core C of the distribution is of
relevance, i.e. the interval of values for which possibility equals 1,
together with the values of the a-cut interval D(0.05), which
represents an interval for which P(qAD(0.05))Z0.95. For our fault
tree case we find that C is just a point value equal to {0.0334} and
D(0.05)

¼[0.00120, 0.0725]. In the possibilistic approach, all that
can be said about the probability that the true value of q lies
within the core C is that it is greater than or equal to 0. No further
probability structure can be assigned. The interpretation of the
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Fig. 1. Cumulative distribution functions for q for probabilistic (solid line),

possibilistic (dotted lines) and hybrid (dashed lines) approaches.
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a-cut when a¼0.05, D(0.05)
¼[0.00120, 0.0725], is thus that there

is a 95% or greater probability that q is in D(0.05).
In the hybrid approach, probability and possibility distribu-

tions of the failure rates of the basic events are combined to yield
lower and upper values of the probability that the top event
probability (chance) lies in an interval, say [0, 0.01]. For our fault
tree case it turns out that it can only be said that the value of
the probability P(qr10�2) lies in the interval [0.214, 0.608].
In the risk analysis context, one may then consider the percentile
Q lower

95 ¼ 0:0476 which guarantees that the probability that the
true value of q is lower than Q lower

95 , PðqrQ lower
95 Þ, is greater than or

equal to 0.95, i.e. 0:95rPðqrQ lower
95 Þ.

Hence Q lower
95 can be interpreted as a conservative assignment

of the percentile with respect to the imprecision related to the
failure rate probability distributions. If the interval [0, Q lower

95 ] is
considered, the hybrid approach provides also an upper value for
P(qrQ lower

95 ). In the case study considered this upper bound
equals 0.966. The bound [0.95, 0.966] reflects the imprecision
about PðqrQ lower

95 Þ that results from the use of possibility
distributions as a representation of uncertainty for some of the
failure rates in the fault tree. The analysts (experts) are not able or
willing to precisely assign their probability about the values of the
failure rates, the result being the above imprecision interval.

All the above mentioned approaches are quantitative. Another
research direction is based on a mixture of quantitative and
qualitative methods. An example is the semi-quantitative
approach outlined by Aven [63–65]. Following this approach,
uncertainty factors ‘‘hidden’’ in the background knowledge that
the subjective probabilities are based on are identified and
assessed in a qualitative way. The motivation for the qualitative
analysis is the acknowledgment and belief that the full scope of
the risks and uncertainties cannot be transformed to a mathe-
matical formula, using probabilities or other measures of
uncertainty. Numbers can be generated but would not alone
serve the purpose of the risk assessment, to reveal and des-
cribe the risks and uncertainties, as a basis for risk-informed
decision-making.

5. Concerns for practical decision making

From the front end of the analysis, the representation of the
knowledge available as input to the risk assessment in support of
the decision making must be faithful and transparent: the
methods and models used should not add information that is
not there, nor ignore information that is there. In high-
consequence technologies, one deals with rare events and
processes for which experimental and field data are lacking or
scarce, at best; then it is essential that the related information and
knowledge are elicited and treated in an adequate way. Two
concerns then need to be balanced:

(i) the knowledge should to the extent possible be ‘‘inter-
subjective’’ in the sense that the representation corresponds
to documented and approved information and knowledge and

(ii) the risk analysts’ judgments (degrees of belief) should be
clearly reflected.

The former concern makes the pure Bayesian approach
difficult to apply: introducing analysts’ subjective probability
distributions is unjustifiable since this leads to building a
structure in the probabilistic analysis that is not present in the
expert-provided information. For example, if an expert states his
or her uncertainty assessment of a parameter value in terms of
a range of possible values, this does not justify the allocation
of a specific distribution function (for example the uniform

distribution) onto the range. In this view, it might be said that a
more faithful representation of the information and knowledge
available would be one that leaves the analysis open to all
possible probability distribution structures on the assessed range,
without imposing one in particular and without excluding any,
thus providing results that bound all possible distributions.

An alternative approach would be to specify a probability
distribution based on the maximum entropy principle. This
approach does not require the specification of the whole distribu-
tion but only of some of its features, for example the mean and
variance; then, a mathematical procedure is applied to obtain the
distribution characterized by the specified features and, in a certain
sense, minimum information beyond that. For further details on
the procedure, refer to Bedford and Cooke [23, p. 73].

On the other hand, the representation framework should also
take into account the latter concern (ii), i.e. allow for the
transparent inclusion of preferential assignments by the experts
(analysts) who wish to express that some values are more or less
likely than others. The Bayesian approach is the proper frame-
work for such assignments.

From the point of view of the quantitative modeling of
uncertainty in risk assessment, two topical issues are the proper
handling of dependencies among uncertain parameters, and of
model uncertainties. No matter what modeling paradigm is
adopted, it is critical that the meaning of the various concepts
be clarified. Without such clarifications it is impossible to build a
scientific-based risk assessment. In complex situations, when the
propagation is based on many parameters, strong assumptions
may be required to be able to carry out the analysis. The risk
analysts may acknowledge a degree of dependency, but the
analysis may not be able to describe it in an adequate way. The
derived uncertainty representations must be understood and
communicated as measures conditional on this constraint. In
practice it is a main task of the analysts to seek for simple
representations of the system performance and by smart model-
ing it is often possible to obtain independence. The models used
are also included in the background knowledge of epistemic-
based uncertainty representations. We seek accurate models, but
at the same time simple models. The choice of the right model
cannot be seen in isolation from the purpose of the risk
assessments.

From the back-end of the analysis, i.e. the use of its outcomes
for practical decision-making, it is fundamental that the meaning
and practical interpretation of the quantities computed are
communicated in an understandable format to the decision
makers. The format must allow for meaningful comparisons with
numerical safety criteria if defined, for manipulation (e.g. by
screening, bounding and/or sensitivity analyses) and for commu-
nication in deliberation processes.

Risk and uncertainty assessments must be seen within the
context of decision making. There are in fact also different
perspectives on how to use risk and uncertainty assessments for
decision making. Strict adherence to expected utility theory, cost–
benefit analysis and related theories would mean clear recom-
mendations on what is the optimal arrangement or measure.
However, most risk researchers and risk analysts would see risk
and uncertainty assessments as decision support tools, in the
sense that the assessments inform the decision makers. The
decision-making is risk-informed, not risk-based [66]. In general,
there is a significant leap from the assessments to the decision.
What this leap (often referred to as managerial review and
judgment) comprises is a subject being discussed in the literature
(e.g. [67]) and it is also closely linked to the present work. The
scope and boundaries of risk and uncertainty assessments define
to a large extent the content of this review and judgment.
A narrow probability-based risk and uncertainty characterization
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calls for a broader managerial review and judgment, and vice
versa.

Seeing risk assessment as an aid rather than the sole basis for
decision making, alternative approaches for the representation
and treatment of uncertainties in risk assessment are required.
A Bayesian analysis without thorough considerations of the
background knowledge and associated assumptions would nor-
mally fail to reveal important uncertainty factors. Such considera-
tions (qualitative assessments) are essential for ensuring that the
decision makers are not seriously misled by the risk assessment
results.

It is a huge step from the needs and requirements of such
assessments to methods that quantitatively express, and bound,
the imprecision in the probability assignments. These methods
are also based on a set of premises and assumptions, but not to
the same degree as the pure probability-based analyses. Their
motivation is that the intervals produced correspond better to the
information available. In the above fault tree example, the hybrid
probability–possibility analysis results in an interval [0.214,
0.608] for the subjective probability P(qr0.01). The risk analysts
(experts) are not able or willing to precisely assign their
probability P(qr0.01). The decision maker may however request
that the analysts make such assignments – the decision maker
would like to be informed by the analysts’ degree of belief (refer
to the concern (ii) above). The analysts are consulted as experts in
the field studied and the decision maker expects them to give
their faithful report of the epistemic uncertainties about the
unknown quantities addressed. The decision-maker knows that
these judgments are based on some knowledge and some
assumptions, and are subjective in the sense that others could
conclude differently, but these judgments are still considered
valuable as the analysts have competence in the field being
studied. The analysts are trained in probability assignments and
the decision-maker expects that the analysts are able to transform
their knowledge into probability figures [33].

Following this view, we should continue to conduct prob-
ability-based analysis reflecting the analysts’ degrees of belief
about unknown quantities, but we should also encourage
additional assessments. These include sensitivity analyses to see
how sensitive the risk indices are with respect to changes in basic
input quantities, for example assumptions and suppositions
[35,36,68,69], but also crude qualitative assessments of uncer-
tainty factors as mentioned above. The use of imprecision
intervals would further point at the importance of key assump-
tions made.

A unifying framework for representation and treatment of
uncertainties in risk assessment can be established following the
ideas outlined in the previous Sections. Imprecision intervals
constitute an integral part of such a framework. To make these
intervals meaningful in a practical decision making context,
interpretations such as those provided in Section 4.1 are required.
Note that all quantities in Section 4.1 have been interpreted by
means of probabilities, because it is common technical language
prone to natural interpretation.

The theories for handling imprecision intervals are here not
reported in detail (but they are summarized in the Appendix A), as
they are technical and not important for the proper understanding
of the results. We believe that to make the alternative approaches
operational in a practical decision making context, we should
leave out the technical terminology used in these theories. If one
looks at various attempts that have been made to use alternative
representations of uncertainty in risk assessments contexts, the
general impression is that they are extremely difficult to under-
stand and appreciate. We believe that in a practical decision
making context they would typically be rejected as they add more
confusion than insights.

6. Discussion

Nowadays, the use of risk assessment as a tool in support of
decision making is quite widespread, particularly in high-
consequence technologies. The techniques of analysis sustaining
the assessment must be capable of building the level of
confidence in the results required for taking the decision they
inform. A systematic and rational control on the uncertainty
affecting the analysis is the key to confidence building.

In practical risk assessments, the uncertainty is commonly
treated by probabilistic methods, in their Bayesian formulation for
the treatment of rare events and poorly known processes typical
of high-consequence technologies. However, a number of theore-
tical and practical challenges seem to be still somewhat open. This
has sparked the emergence of a number of alternative approaches,
which have been here considered in relation to the support to
decision making that they can provide.

Many risk researchers and risk analysts are sceptical to the use
of ‘‘non-probabilistic’’ approaches (such as those of the four
categories (b)–(e) listed in the Introduction) for the representation
and treatment of uncertainty in risk assessment for decision
making. An imprecise probability result is considered to provide a
more complicated representation of uncertainty [31]. By an
argument that the simple should be favoured over the complicated,
Lindley [31] takes the position that the complication of imprecise
probabilities seems unnecessary. In a strong rejection statement,
Lindley [71] argues that the use of interval probabilities goes
against the idea of simplicity, as well as confuses the concept of
measurement (interpretation in the view of Bedford and Cooke
[23]) with the practice of measurement (measurement procedures
in the view of Bedford and Cooke [23]). The standard for probability
assignments that Lindley [71] emphasises (see Appendix A) is a
conceptual comparison. It provides a norm, and measurement
problems may make the assessor unable to behave according to it.
Bernardo and Smith [46] call the idea of a formal incorporation of
imprecision into the axiom system ‘‘an unnecessary confusion of
the prescriptive and the descriptive’’ for many applications, and
point out that measurement imprecision occurs in any scientific
discourse in which measurements are taken. They make a parallel
to the inherent limits of a physical measuring instrument, where it
may only be possible to conclude that a reading is in the range
3.126–3.135, say. Then, we would typically report the value 3.13
and proceed as if this were the precise number:

We formulate the theory on the prescriptive assumption that
we aspire to exact measurement (..), whilst acknowledging that,
in practice, we have to make do with the best level of precision
currently available (or devote some resources to improving our
measuring instruments!) ([46, p. 32]).

Many analysts argue fiercely for a strict Bayesian analysis.
A typical statement is [32]: ‘‘For me, the introduction of alter-
natives such as interval analysis to standard probability theory
seems a step in the wrong direction, and I am not yet persuaded it
is a useful area even for theoretical research. I believe risk analysts
will be better off using standard probability theory than trying out
alternatives that are harder to understand, and which will not be
logically consistent if they are not equivalent to standard prob-
ability theory.’’ However, as argued in this paper, this approach
does not solve the problems raised. The decision basis cannot be
restricted to subjective probabilities: there is a need to go beyond
the Bayesian approach.

In the end, any method of uncertainty representation and
analysis in risk assessment must address a number of very practical
questions before being applicable in support to decision making:

� How completely and faithfully it represents the knowledge
and information available?
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� How costly is the analysis?
� How much confidence does the decision maker gain from the

analysis and the presentation of the results?
� What value does it bring to the dynamics of the deliberation

process?

More so, any method which intends to complement, or in some
justified cases supplement, the commonly adopted probabilistic
approach to risk assessment should demonstrate that the efforts
needed for the implementation and familiarization, by the
analysts and decision makers, are feasible and acceptable in view
of the benefits gained in terms of the above questions and,
eventually, of the confidence in the decision made.

7. Conclusions

The present work is seen as a contribution to developing a
broad perspective and framework of uncertainty analysis in risk
assessment, by critically analyzing alternative approaches and
seeking their coherent integration for effective decision making.
This perspective and framework extend beyond the Bayesian
approach. We argue that a full risk-uncertainty description is
more than subjective probabilities. We have outlined and
discussed some key issues that we consider important for the
development of such a perspective/framework. There are still
many unsolved problems and we hope that the paper will
stimulate further research in this area, which is considered
extremely important for the risk field. If uncertainty cannot be
properly treated in risk assessment, the risk assessment tool fails
to perform as intended.
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Appendix A. Review of methods for representation of
uncertainty

A.1. Probability

Probability is a single-valued measure of uncertainty, in the
sense that uncertainty about the occurrence of an event A is
represented by a single number P(A). Different interpretations of
probabilities exist, and these are closely related to different
notions of uncertainty. Two interpretations of probability are of
widespread use in risk analyses: the relative frequency inter-
pretation and the subjective or Bayesian interpretation.

In the relative frequency interpretation, probability is defined as
the fraction of times an event A occurs if the situation considered
were repeated an infinite number of times. Taking a sample of

repetitions of the situation, randomness causes the event A to
occur a number of times and to not occur the rest of the times.
Asymptotically, this process generates a fraction of successes, the
‘‘true’’ probability P(A). This uncertainty (i.e. variation) is some-
times referred to as aleatory uncertainty. Of course, in practice it
is not possible to repeat the experiment an infinite number of
times and thus P(A) needs to be estimated, for example by the
relative frequency of occurrence of A in the finite sample
considered. The lack of knowledge about the true value of P(A)
is termed epistemic uncertainty. Whereas epistemic uncertainty
can be reduced (by extending the size of the sample), the aleatory
uncertainty cannot. For this reason it is sometimes called
irreducible uncertainty [73].

In the subjective (Bayesian) interpretation, probability is a purely
epistemic-based expression of uncertainty as seen by the assigner,
based on his/her background knowledge. In this view, the
probability of an event A represents the degree of belief of the
assigner with regard to the occurrence of A. The probability can be
assigned with reference to either betting or some standard event.
If linked to betting, the probability of the event A, P(A), is the price
at which the assessor is neutral between buying and selling a
ticket that is worth one unit of payment if the event occurs, and is
worthless otherwise [30,45]. Following the reference to a standard,
the assessor compares his uncertainty about the occurrence of the
event A with some standard events, e.g. drawing a favourable ball
from an urn that contains P(A) �100% favourable balls [31].

Irrespective of reference, all subjective probabilities are seen as
conditioned on the background knowledge K that the assignment
is based on. They are probabilities in the light of current
knowledge [71]. To show the dependencies on K it is common
to write P(A9K), but often K is omitted as the background
knowledge is tacitly understood to be a basis for the assignments.
Elements of K may be uncertain and seen as unknown quantities,
as pointed out by Mosleh and Bier [74]. However, the entire K
cannot generally be treated as an unknown quantity and removed
using the law of total probability, i.e. by taking EK[P(A9K)] to
obtain an unconditional P(A).

In this view, randomness is not seen as a type of uncertainty in
itself. It is seen as a basis for expressing epistemic-based
uncertainty. A relative frequency generated by random variation
is referred to as a chance, to distinguish it from a probability,
which is reserved for expressions of epistemic uncertainty based
on belief [30,71]. Thus, we may use probability to describe
uncertainty about the unknown value of a chance. As an example,
consider an experiment in which the event A of interest occurs
p �100% of the times the experiment is performed. Suppose that
the chance p is unknown. Then, the outcomes of the experiment
are not seen as independent, since additional observations would
provide more information about the value of p. On the contrary, in
the case that p were known the outcomes would be judged as
independent, since nothing more could be learned about p from
additional observations of the experiment. Thus, conditional on p

the outcomes are independent, but unconditionally they are not;
they are exchangeable. The probability of an event A for which p is
known is simply p. In practice, p is in most cases not known, and
the assessor expresses his/her (a priori) uncertainty about the
value of p by a probability distribution H(p). Then, the probability
of A can be expressed as

PðAÞ ¼

Z
PðA9pÞdHðpÞ ¼

Z
pdHðpÞ ð1Þ

One common approach to risk analysis is to use epistemic-
based probabilities to describe uncertainty about the true value of
a relative frequency-interpreted probability (chance). This is
called the probability of frequency approach [25] – probability
referring to the epistemic-based expressions of uncertainty and
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frequency to the limiting relative frequencies of events. By taking
the expected value of the relative frequency-based probability
with respect to the epistemic-based probabilities, both aleatory
and epistemic uncertainties are reflected.

A.2. Imprecise (interval) probability

To explain the meaning of imprecise probabilities (or interval

probabilities) consider an event A. Then uncertainty is represented
by a lower probability P(A) and an upper probability PðAÞ, giving
rise to a probability interval [P(A), PðAÞ], where 0rP(A)rPðAÞr1.
The difference

DPðAÞ ¼ PðAÞ�PðAÞ ð2Þ

is called the imprecision in the representation of the event A.
Single-valued probabilities are a special case of no imprecision
and the lower and upper probabilities coincide. The intervals can
be interpreted using de Finetti’s gambling framework as shown by
Walley [70]: the lower value is the highest price at which the
assessor is sure he or she would buy a gamble, and the upper
value is the lowest price at which the assessor is sure he or she
would be selling the gamble. If the upper and lower values are
equal, the interval is reduced to a precise probability.

We may alternatively link the understanding of the interval
probability to the reference to a standard interpretation of a
subjective probability P(A): the assessor’s degree of belief of A to
occur is stronger than the degree of belief of drawing a favourable
ball from an urn which include PðAÞ�100% favourable balls, and
weaker than the degree of belief of drawing a favourable ball from
an urn which include PðAÞ�100% favourable balls.

We refer to Walley [70] and Coolen and Utkin [75].

A.3. Probability bound analysis

Ferson and Ginnzburg [6] suggest a combined probability
analysis - interval analysis, referred to as a probability bound

analysis. The setting is a risk assessment where the aim is
to express uncertainties about some parameters yi of a model
(a function y of the yis, for example y equal to the product of the
parameters yi). For the parameters where the aleatory uncertain-
ties cannot be accurately estimated, probability interval analysis
is used. In this way uncertainty propagation is carried out in the
traditional probabilistic way for some parameters, and intervals
are used for others. More specifically it means that:

(1) For parameters yi where the aleatory uncertainties cannot be
accurately estimated, use interval analysis expressing that
airyirbi for constants ai and bi,

(2) For parameters yi where the aleatory uncertainties can be
accurately assessed, use probabilities (relative frequency-
interpreted probabilities) to describe the distribution over yi.

(3) Combine 1 and 2 to generate a probability distribution over y,
for the different interval limits. For example, assume that for
i¼1, interval analysis is used with bounds a1 and b1, whereas
for i¼2, a probabilistic analysis is used. Then we obtain a
probability distribution over y¼y1y2 (say) when y1¼a1 and a
probability distribution over y when y1¼b1.

Following this approach subjective probabilities are not used.
Bounds replace the epistemic-based probabilities.

A.4. Possibility theory

In possibility theory, uncertainty is represented by using a
possibility function r(x). For each x in a set O, r(x) expresses the

degree of possibility of x. When r(x)¼0 for some x, it means that
the outcome x is considered an impossible situation. When r(x)¼1
for some x, it means that the outcome x is possible, i.e. is just
unsurprising, normal, usual [11]. This is a much weaker statement
than when probability is 1.

The possibility function r gives rise to probability bounds,
upper and lower probabilities, referred to the necessity and
possibility measures (Nec, Pos). They are defined as follows.

The possibility (plausibility) of an event A, Pos(A), is defined by

PosðAÞ ¼ supfxAAgrðxÞ, ð3Þ

and the necessity measure Nec(A) is defined by Nec(A)¼
1�Pos(not A).

Let P(r) be a family of probability distributions such that for all
events A,

NecðAÞrPðAÞrPosðAÞ:

Then

NecðAÞ ¼ infPðAÞ and PosðAÞ ¼ supPðAÞ ð4Þ

where inf and sup are with respect to all probability measures
in P. Hence the necessity measure is interpreted as a lower level
for the probability and the possibility measure is interpreted as an
upper limit. Using subjective probabilities, the bounds reflect that
the analyst is not able or willing to precisely assign his/her
probability. He or she can only describe a subset of P which
contains his/her probability [10].

A typical example of possibilistic representation is the
following [60,76]: we consider an uncertain parameter x. Based
on its definition we know that the parameter can take values in
the range [1,3] and the most likely value is 2. To represent this
information a triangular possibility distribution on the interval
[1, 3] is used, with maximum value at 2, see Fig. A1.

From the possibility function we define a cut sets Fa¼{x: r

(x)Za}, for 0rar1. For example F0.5¼[1.5, 2.5] is the set of x

values for which the possibility function is greater than or equal
to 0.5. From the triangular possibility distribution in Fig. A1, we
can conclude that if A expresses that the parameter lies in the
interval [1.5, 2.5], then 0.5rP(A)r1.

From (4) we can deduce the associate cumulative necessity/
possibility measures Nec(�N, x] and Pos(�N, x] as shown in
Fig. A2. These measures are interpreted as the lower and upper
limiting cumulative probability distributions for the uncertain
parameter x. Hence the bounds for the interval [1, 2] is
0rP(A)r1.

These bounds can be interpreted as for the interval probabil-
ities: the interval bounds are those obtained by the analyst as
he/she is not able or willing to precisely assign his/her probability –
the interval is the best he/she can do given the information
available.
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Fig. A1. Possibility function for a parameter on the interval [1, 3], with maximum

value at 2.
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A.5. Evidence theory (Dempster-Shafer theory. theory of belief

functions)

Random sets in the two forms proposed by Dempster [8] and
Shafer [9] is based on the specification of beliefs and plausibilities,
for each subset of outcomes (event) in the sample space under
consideration. This allows the theory to take into account the
weight of evidence. Possibility theory can be considered a special
case of this theory.

Consider an event A and its complement Ac. These are mutually
exclusive and exhaustive events, and in probability theory their
respective probabilities are required to sum to one. Thus, if the
event A is assigned the probability p, then Ac must be assigned the
probability 1�p. To the contrary, in evidence theory degrees of
belief are assigned based on the strength of the supporting
evidence: the belief value must represent the degree to which
evidence is judged to support a given proposition and the degree
of belief is explained by Shafer [9] as the commitment of a certain
portion of someone’s belief. If there is little evidence both in
favour of and against the event A, then the belief in both its
occurrence and its non-occurrence should be assigned low values.
In the extreme case of no evidence at all, both beliefs should be
set equal to zero. Letting Bel(A) denote the degree of belief that A

will occur and Bel(Ac) the degree of belief that A will not occur, the
requirement is only that

BelðAÞþBelðAcÞr1 ð5Þ

Thus, the specification of the belief function is capable of
incorporating a lack of confidence in the occurrence of the event
A, quantitatively manifested in the sum of the beliefs of the
occurrence (Bel(A)) and non-occurrence (Bel(Ac)) being less than
one. The difference 1�[Bel(A)+Bel(Ac)] is called ignorance. When
the ignorance is 0, the available evidence justifies a probabilistic
description of the uncertainty.

According to Shafer [9], an adequate summary of the impact of
evidence must include at least two items of information: the
support of the evidence in favour and the support of the evidence
against. The plausibility of the event A, Pl(A), is then introduced as
the extent to which evidence does not support Ac and the relation
between plausibility and belief is

PlðAÞ ¼ 1�BelðAcÞ ð6Þ

A fundamental property of the plausibility function is that:

PlðAÞþPlðAcÞZ1 ð7Þ

Thus, the specification of the plausibility function reflects the
evidence in support of the occurrence or not of the event A, as
quantified by the sum of the plausibilities of the occurrence
(Pl(A)) and non-occurrence (Pl(Ac)) being greater than or equal to
one.

The theory is based on the idea of obtaining degrees of
belief for one question from subjective probabilities for related

questions [72]. To illustrate, suppose that a diagnostic model is
available to indicate with reliability (i.e. probability of providing
the correct result) of 0.9 when a given system is failed. Consid-
ering a case in which the model does indeed indicate that the
system is failed, this fact justifies a 0.9 degree of belief on such
event (which is different from the related event of model
correctness for which the probability value of 0.9 is available)
but only a 0 degree of belief (not a 0.1) on the event that the
system is not failed. This latter belief does not mean that it is
certain that the system has failed, as a zero probability would: it
merely means that the model indication provides no evidence to
support the fact that the system is not failed. The pair of values
{0.9, 0} constitutes a belief function on the propositions ‘‘the
system is failed’’ and ‘‘the system is not failed’’.

From the above simple example, one can appreciate how the
degrees of belief for one question (has the system failed?)
are obtained from probabilities related to another question (is
the diagnostic model correct?).

Denoting by A the event that the system is failed and by m the
diagnostic indication of the system state, the conditional prob-
ability P(m9A), i.e. the model reliability, is used as the degree of
belief that the system is failed. This is unlike the standard
Bayesian analysis, where focus would be on the conditional
probability of the failure event given the state diagnosis by the
model, P(A9m), which is obtained by updating the prior prob-
ability on A, P(A), using Bayes’ rule.

As for the interpretation of the measures introduced in
evidence theory, Shafer [72] uses several metaphors for assigning
(and hence interpreting) belief functions. The simplest says that
the assessor judges that the strength of the evidence indicating
that the event A is true, Bel(A), is comparable with the strength of
the evidence provided by a witness who has a Bel(A) �100% chance
of being reliable. Thus, we have

BelðAÞ ¼ PðThe witness claiming that A is true is reliableÞ ð8Þ

The metaphor is to be interpreted as the diagnostic model
analyzed above, witness reliability playing the role of model
reliability.
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